#' Methods for dfba
#' @importFrom stats dbeta
#'
# Formatted output for dfba_phi
#' @export
#' @rdname dfba_phi_out_show_method
setMethod("show", signature("dfba_phi_out"), function(object) {
cat("Descriptive Statistics \n")
cat("========================\n")
cat(" ", "Concordant Pairs", "\t", "Discordant Pairs", "\n")
cat(" ", object$nc, "\t\t\t", object$nd, "\n")
cat(" ", "Proportion of Concordant Pairs", "\n")
cat(" ", object$sample.p, "\n")
cat("\nFrequentist Analyses\n")
cat("========================\n")
cat(" ", "Tau_A\n")
cat(" ", object$tau, "\n")
cat("\nBayesian Analyses\n")
cat("========================\n")
cat(" ", "Posterior Beta Shape Parameters for the Phi Concordance Measure\n")
cat(" ", "a.post", "\t\t", "b.post\n")
cat(" ", object$a.post, "\t\t", object$b.post, "\n")
cat(" ", "Posterior Median\n")
cat(" ", object$post.median, "\n")
cat(" ", object$interval.width*100, "% Equal-tail Interval\n", sep="")
cat(" ", "Lower Limit", "\t\t", "Upper Limit\n")
cat(" ", object$post.eti.lower, "\t\t", object$post.eti.upper, "\n")
})
# Formatted output for dfba_phi when fitting parameters are specified in options
#' @export
#'
#' @rdname dfba_phi_star_out_show_method
setMethod("show", "dfba_phi_star_out", function(object) {
cat("Descriptive Statistics \n")
cat("========================\n")
cat(" ", "Concordant Pairs", "\t", "Discordant Pairs", "\n")
cat(" ", object$nc, "\t\t\t", object$nd, "\n")
cat(" ", "Proportion of Concordant Pairs", "\n")
cat(" ", object$sample.p, "\n")
cat("\nFrequentist Analyses\n")
cat("========================\n")
cat(" ", "Tau_A point estimate\n")
cat(" ", object$tau, "\n")
cat("\nBayesian Analyses\n")
cat("========================\n")
cat(" ", "Posterior Beta Shape Parameters for the Phi Concordance Measure\n")
cat(" ", "a.post", "\t\t", "b.post\n")
cat(" ", object$a.post, "\t\t", object$b.post, "\n")
cat(" ", "Posterior Median\n")
cat(" ", object$post.median, "\n")
cat(" ", object$interval.width*100, "% Equal-tail Interval\n", sep="")
cat(" ", "Lower Limit", "\t\t", "Upper Limit\n")
cat(" ", object$post.eti.lower, "\t\t", object$post.eti.upper, "\n")
cat("\nAdjusted for number of model-fitting parameters\n")
cat("------------------------\n")
cat(" ", "Beta Shape Parameters\n")
cat(" ", "a.post", "\t\t", "b.post\n")
cat(" ", object$a.post_star, "\t\t", object$b.post_star, "\n")
cat(" ", "Posterior Median\n")
cat(" ", object$post.median_star, "\n")
cat(" ", object$interval.width*100, "% Equal-tail Interval\n", sep="")
cat(" ", "Lower Limit", "\t\t", "Upper Limit\n")
cat(" ", object$post.eti.lower_star, "\t\t", object$post.eti.upper_star, "\n")
})
# Plot posterior and prior (optional) for dfba_phi
# To call plots, use plot(dfba_phi())
#' @export
#' @rdname dfba_phi_plot_method
setMethod("plot",
signature("dfba_phi_out"),
function(x, plot.prior=TRUE){
x.phi<-seq(0, 1, 1/1000)
y.phi<-dbeta(x.phi,
x$a.post,
x$b.post)
if (plot.prior==FALSE){
plot(x.phi,
y.phi,
type="l",
xlab="Phi",
ylab="Probability Density")
} else {
plot(x.phi,
y.phi,
type="l",
xlab="Phi",
ylab="Probability Density",
main=expression("--"~"Prior"~ - "Posterior")
)
lines(x.phi,
dbeta(x.phi,
x$a.prior,
x$b.prior),
lty=2)
}
})
# Plot posterior and prior (optional) for dfba_phi when fitting parameters are specified in options
# To call plots, use plot(dfba_phi())
#' @export
#' @rdname dfba_phi_star_plot_method
setMethod("plot",
signature("dfba_phi_star_out"),
function(x, plot.prior=TRUE){
x.phi<-seq(0, 1, 1/1000)
y.phi<-dbeta(x.phi,
x$a.post_star,
x$b.post_star)
if (plot.prior==FALSE){
plot(x.phi,
y.phi,
type="l",
xlab="Phi",
ylab="Probability Density")
} else {
plot(x.phi,
y.phi,
type="l",
xlab="Phi",
ylab="Probability Density",
main=expression("--"~"Prior"~ - "Posterior")
)
lines(x.phi,
dbeta(x.phi,
x$a.prior,
x$b.prior),
lty=2) }
})
# Formatted output for dfba_gamma
#' @export
#' @rdname dfba_gamma_show_method
setMethod("show", "dfba_gamma_out", function(object) {
cat("Descriptive Statistics \n")
cat("========================\n")
cat(" ", "Concordant Pairs", "\t", "Discordant Pairs", "\n")
cat(" ", object$nc, "\t\t\t", object$nd, "\n")
cat(" ", "Proportion of Concordant Pairs", "\n")
cat(" ", object$sample.p, "\n")
cat(" ", "Goodman-Kruskal Gamma\n")
cat(" ", object$gamma, "\n")
cat("\nBayesian Analyses\n")
cat("========================\n")
cat(" ", "Posterior Beta Shape Parameters for the Concordance Phi\n")
cat(" ", "a.post", "\t", "b.post\n")
cat(" ", object$alpha, "\t\t", object$beta, "\n")
cat(" ", "Posterior Median\n")
cat(" ", object$post.median, "\n")
cat(" ", object$interval.width*100, "% Equal-tail Interval\n", sep="")
cat(" ", "Lower Limit", "\t\t", "Upper Limit\n")
cat(" ", object$post.eti.lower, "\t\t", object$post.eti.upper)
})
# Plot method for gamma
#' @export
#' @rdname dfba_gamma_plot_method
setMethod("plot",
signature("dfba_gamma_out"),
function(x, plot.prior=TRUE){
x.phi<-seq(0, 1, 1/1000)
y.phi<-dbeta(x.phi,
x$a.post,
x$b.post)
if (plot.prior==FALSE){
plot(x.phi,
y.phi,
type="l",
xlab="Phi",
ylab="Probability Density")
} else {
plot(x.phi,
y.phi,
type="l",
xlab="Phi",
ylab="Probability Density",
main=expression("--"~"Prior"~ - "Posterior")
)
lines(x.phi,
dbeta(x.phi,
x$a.prior,
x$b.prior),
lty=2) }
})
# Formats for small- and large-n Mann Whitney
## Small n
#' @export
#' @rdname dfba_mann_whitney_small_show_method
setMethod("show", "dfba_mann_whitney_small_out", function(object) {
cat("Descriptive Statistics \n")
cat("========================\n")
cat(" ", "n_E", "\t", "n_C", "\n")
cat(" ", object$n_E, "\t\t\t", object$n_C, "\n")
cat(" ", "E mean", "\t", "C mean", "\n")
cat(" ", object$Emean, "\t\t\t", object$Cmean, "\n")
cat(" ", "U_E and U_C Mann-Whitney Statistics", "\n")
cat(" ", object$U_E, "\t\t\t", object$U_C, "\n")
cat("\n Monte Carlo Sampling with Discrete Probability Values\n")
cat("========================\n")
cat(" ", "Number of MC Samples\n")
cat(" ", object$samples, "\n")
cat(" ", "\n Mean of omega_E:\n")
cat(" ", object$omegabar, "\n")
cat("equal-tail area interval")
cat(" ", object$prob_interval*100, "% interval limits:", "\n", sep="")
cat(" ", object$qLv, "\t\t\t", object$qHv, "\n")
cat(" ", "probability that omega_E exceeds 0.5:\n")
cat(" ", "prior", "\t\t\t", "posterior\n")
cat(" ", object$priorprH1, "\t\t\t", object$prH1, "\n")
cat(" Bayes factor BF10 for omega_E > 0.5:\n")
cat(" ", object$BF10, "\n")
})
#' @export
#' @rdname dfba_mann_whitney_large_show_method
setMethod("show", "dfba_mann_whitney_large_out", function(object) {
cat("Descriptive Statistics \n")
cat("========================\n")
cat(" ", "n_E", "\t", "n_C", "\n")
cat(" ", object$n_E, "\t\t\t", object$n_C, "\n")
cat(" ", "E mean", "\t", "C mean", "\n")
cat(" ", object$Emean, "\t\t\t", object$Cmean, "\n")
cat(" ", "U_E and U_C Mann-Whitney Statistics", "\n")
cat(" ", object$U_E, "\t\t\t", object$U_C, "\n")
cat("\n Beta Approximation Model for Omega_E\n")
cat(" for 2*nE*nC/(nE+nC) > 19\n")
cat("========================\n")
cat(" ", "The posterior beta shape parameters are:\n")
cat(" ", "posterior a", "\t\t\t", "posterior b\n")
cat(" ", object$apost, "\t\t\t", object$bpost, "\n")
cat(" ", "posterior mean", "\t\t\t", "posterior median\n")
cat(" ", object$postmean, "\t\t\t", object$postmedian, "\n")
cat(" ", "probability within interval:\n")
cat(" ", round(object$prob_interval*100), " percent\n")
cat(" ", "equal-tail limit values are:\n")
cat(" ", object$qlequal, "\t\t\t", object$qhequal, "\n")
cat(" ", "highest-density limits are:\n")
cat(" ", object$qLmin, "\t\t\t", object$qHmax, "\n")
cat(" ", "probability that omega_E > 0.5:\n")
cat(" ", "prior", "\t\t\t", "posterior\n")
cat(" ", object$priorprH1, "\t\t\t", object$prH1, "\n")
cat(" ", "Bayes factor BF10 for omega_E > 0.5:\n")
cat(" ", ifelse(object$BF10 == Inf, "approaching infinity", object$BF10), "\n")
})
# Plots for Mann-Whitney
## small method
#' @export
#' @rdname dfba_mann_whitney_small_plot_method
setMethod("plot",
signature("dfba_mann_whitney_small_out"),
function(x,
plot.prior=TRUE){
x.data<-x$omega_E
y.predata<-x$priorvector
y.postdata<-x$omegapost
xlab="omega_E"
ylab="Discrete Probability"
if (plot.prior==FALSE){
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab)
} else {
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab,
main=expression("--"~"Prior"~ - "Posterior"))
lines(x.data,
y.predata,
lty=2)
}
}
)
## large method
#' @export
#' @rdname dfba_mann_whitney_large_plot_method
setMethod("plot",
signature("dfba_mann_whitney_large_out"),
function(x,
plot.prior=TRUE){
x.data<-seq(0, 1, 1/1000)
y.predata<-dbeta(x.data, x$a0, x$b0)
y.postdata<-dbeta(x.data, x$apost, x$bpost)
xlab="omega_E"
ylab="Probability Density"
if (plot.prior==FALSE){
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab)
} else {
# opar<-par(no.readonly=TRUE)
# par(mar=c(4.1, 4.1, 4.1, 4.1), xpd=TRUE)
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab,
main=expression("--"~"Prior"~ - "Posterior"))
lines(x.data,
y.predata,
lty=2)
# legend("top",
# inset = c(0, -0.1),
# legend=c("Posterior",
# "Prior"),
# lty=c(1, 2),
# xpd=TRUE,
# horiz=TRUE)
# on.exit(par(opar))
}
}
)
# Formats for Wilcoxon small and large
## Small n
#' @export
#' @rdname dfba_wilcoxon_small_show_method
setMethod("show", "dfba_wilcoxon_small_out", function(object) {
cat("Descriptive Statistics \n")
cat("========================\n")
cat(" ", "Wilcoxon Signed-Rank Statistics", "\n")
cat(" ", "n", "\t", "T_pos", "\t", "T_neg", "\n")
cat(" ", object$n, "\t\t\t", object$T_pos, "\t\t\t", object$T_neg,"\n")
cat("\n Monte Carlo Sampling with Discrete Probability Values\n")
cat("========================\n")
cat(" ", "Number of MC Samples\n")
cat(" ", object$samples, "\n")
cat(" ", "\n Posterior mean of phi_w:\n")
cat(" ", object$phibar, "\n")
cat("equal-tail area interval")
cat(" ", object$prob_interval*100, "% interval limits:", "\n", sep="")
cat(" ", object$qLv, "\t\t\t", object$qHv, "\n")
cat(" ", "probability that phi_W exceeds 0.5:\n")
cat(" ", "prior", "\t\t\t", "posterior\n")
cat(" ", object$priorprH1, "\t\t\t", object$prH1, "\n")
cat(" Bayes factor BF10 for phi_W > 0.5:\n")
cat(" ", object$BF10, "\n")
})
#' @export
#' @rdname dfba_wilcoxon_large_show_method
setMethod("show", "dfba_wilcoxon_large_out", function(object) {
cat("Descriptive Statistics \n")
cat("========================\n")
cat(" ", "Wilcoxon Signed-Rank Statistics", "\n")
cat(" ", "n", "\t", "T_plus", "\t", "T_minus", "\n")
cat(" ", object$n, "\t", object$T_plus, "\t", object$T_negative, "\n")
cat("\n Beta Approximation Model for Phi_W\n")
cat(" for n > 24\n")
cat("========================\n")
cat(" ", "The posterior beta shape parameters are:\n")
cat(" ", "posterior a", "\t\t\t", "posterior b\n")
cat(" ", object$apost, "\t\t\t", object$bpost, "\n")
cat(" ", "posterior mean", "\t\t\t", "posterior median\n")
cat(" ", object$postmean, "\t\t\t", object$postmedian, "\n")
cat(" ", "probability within interval:\n")
cat(" ", round(object$prob_interval*100), " percent\n")
cat(" ", "equal-tail limit values are:\n")
cat(" ", object$qlequal, "\t\t\t", object$qhequal, "\n")
cat(" ", "highest-density limits are:\n")
cat(" ", object$qLmin, "\t\t\t", object$qHmax, "\n")
cat(" ", "probability that phi_W > 0.5:\n")
cat(" ", "prior", "\t\t\t", "posterior\n")
cat(" ", object$priorprH1, "\t\t\t", object$prH1, "\n")
cat(" ", "Bayes factor BF10 for phi_W > 0.5:\n")
cat(" ", object$BF10, "\n")
})
#' @export
#' @rdname dfba_t_power_show_method
setMethod("show", "dfba_t_power_out", function(object) {
cat("Power results for the proportion of samples detecting effects"," ","\n")
cat(" ", "where the variates are distributed as a",object$model,"random variable","\n")
cat(" ", "and where the design is",object$design,"\n")
cat(" ", "The number of Monte Carlo samples are:"," ","\n")
cat(" ", object$nsims," ","\n")
cat(" ", "Criterion for detecting an effect is"," ","\n")
cat(" ", object$effect_crit," ","\n")
cat(" ", "The delta offset parameter:"," ","\n")
cat(" ", object$deltav," ","\n")
cat("Output Results:", "\n")
print(object$outputdf)
})
#' @export
#' @rdname dfba_power_curve_show_method
setMethod("show", "dfba_power_curve_out", function(object) {
cat("Power results for the proportion of samples detecting effects"," ","\n")
cat(" ", "where the variates are distributed as a",object$model,"random variable","\n")
cat(" ", "and where the design is",object$design,"\n")
if(object$design=="paired"){cat(" ", "with a blocking max of ",object$block.max,"\n")}
cat(" ", "The number of Monte Carlo samples are:"," ","\n")
cat(" ", object$nsims," ","\n")
cat(" ", "Criterion for detecting an effect is"," ","\n")
cat(" ", object$effect_crit," ","\n")
cat("The n value per condition:"," ","\n")
cat(object$n," ","\n")
cat("Output Results:", "\n")
print(object$outputdf)
})
# Plots for Wilcoxon
#' @export
#' @rdname dfba_wilcoxon_small_plot_method
setMethod("plot",
signature("dfba_wilcoxon_small_out"),
function(x,
plot.prior=TRUE){
x.data<-x$phiv
y.predata<-x$priorvector
y.postdata<-x$phipost
xlab="phi_W"
ylab="Discrete Probability"
if (plot.prior==FALSE){
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab)
} else {
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab,
main=expression("--"~"Prior"~ - "Posterior"))
lines(x.data,
y.predata,
lty=2)
}
})
#' @export
#' @rdname dfba_wilcoxon_large_plot_method
setMethod("plot",
signature("dfba_wilcoxon_large_out"),
function(x,
plot.prior=TRUE){
x.data<-seq(0, 1, 1/1000)
y.predata<-dbeta(x.data, x$a0, x$b0)
y.postdata<-dbeta(x.data, x$apost, x$bpost)
xlab="phi_W"
ylab="Probability Density"
if (plot.prior==FALSE){
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab)
} else {
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab,
main=expression("--"~"Prior"~ - "Posterior"))
lines(x.data,
y.predata,
lty=2)
}
})
# Plots for power functions
## bayes_v_t
#' @export
#' @rdname dfba_t_power_plot_method
setMethod("plot",
signature("dfba_t_power_out"),
function(x){
plot(x$outputdf$sample_size,
x$outputdf$Bayes_power,
type="b",
ylim=c(0,1),
main=expression("--"~"Frequentist"~ - "Bayesian"),
xlab="Sample Size",
ylab="Power Estimate")
lines(x$outputdf$sample_size,
x$outputdf$t_power,
type="b",
lty=2)
})
## power_curve
#' @export
#' @rdname dfba_power_curve_plot_method
setMethod("plot",
signature("dfba_power_curve_out"),
function(x){
plot(x$outputdf$delta_value,
x$outputdf$Bayes_power,
type="b",
ylim=c(0,1),
main=expression("--"~"Frequentist"~ - "Bayesian"),
xlab="Delta",
ylab="Power Estimate")
lines(x$outputdf$delta_value,
x$outputdf$t_power,
type="b",
lty=2)
})
# Formats for Bayes Factor Functions
## Point Bayes Factor
#' @export
#' @rdname dfba_point_BF_show_method
setMethod("show", "dfba_point_BF_out", function(object) {
cat("Bayes Factor for Point Estimates \n")
cat("========================\n")
cat(" ", "Point Null Hypothesis", "\n")
cat(" ", object$null_hypothesis, "\n")
cat(" ", "Shape Parameters for Prior Beta Distribution", "\n")
cat(" ", "a0", "\t\t\t", "b0", "\n")
cat(" ", object$a0, "\t\t\t", object$b0, "\n")
cat(" ", "Shape Parameters for Posterior Beta Distribution", "\n")
cat(" ", "a", "\t\t\t", "b", "\n")
cat(" ", object$a, "\t\t\t", object$b, "\n")
cat(" ", "Prior Probability Density for Null Hypothesis", "\n")
cat(" ", object$dpriorH0, "\n")
cat(" ", "Posterior Probability Density for Null Hypothesis", "\n")
cat(" ", object$dpostH0, "\n")
cat(" ", "Bayes Factor Estimate for the Alternative over the Null Hypothesis", "\n")
cat(" ", object$BF10, "\n")
cat(" ", "Bayes Factor Estimate for the Null over the Alternative Hypothesis", "\n")
cat(" ", object$BF01, "\n")
})
## Interval Bayes Factor
#' @export
#' @rdname dfba_interval_BF_show_method
setMethod("show", "dfba_interval_BF_out", function(object){
cat("Bayes Factor for Interval Estimates \n")
cat("========================\n")
cat(" ", "Interval Null Hypothesis", "\n")
cat(" ", "Lower Limit", "\t\t\t", "Upper Limit", "\n")
cat(" ", object$H0lower,"\t\t\t", object$H0upper, "\n")
cat(" ", "Shape Parameters for Prior Beta Distribution", "\n")
cat(" ", "a0", "\t\t\t", "b0", "\n")
cat(" ", object$a0, "\t\t\t", object$b0, "\n")
cat(" ", "Shape Parameters for Posterior Beta Distribution", "\n")
cat(" ", "a", "\t\t\t", "b", "\n")
cat(" ", object$a, "\t\t\t", object$b, "\n")
cat(" ", "Prior Probability for Null Hypothesis", "\n")
cat(" ", object$pH0, "\n")
cat(" ", "Posterior Probability for Null Hypothesis", "\n")
cat(" ", object$postH0, "\n")
cat(" ", "Prior Probability for Alternative Hypothesis", "\n")
cat(" ", object$pH1, "\n")
cat(" ", "Posterior Probability for Alternative Hypothesis", "\n")
cat(" ", object$postH1, "\n")
cat(" ", "Bayes Factor Estimate for the Alternative over the Null Hypothesis", "\n")
cat(" ", object$BF10, "\n")
cat(" ", "Bayes Factor Estimate for the Null over the Alternative Hypothesis", "\n")
cat(" ", object$BF01, "\n")
})
## Beta Contrasts
#' @export
#' @rdname dfba_beta_contrast_show_method
setMethod("show", "dfba_beta_contrast_out", function(object) {
cat("Bayesian Contrasts \n")
cat("========================\n")
cat(" ", "Contrast Weights", "\n")
cat(" ", object$contrast_vec, "\n")
cat(" ", "Exact posterior contrast mean", "\n")
cat(" ", object$mean, "\n")
cat(" ", "Monte Carlo sampling results", "\n")
cat(" ", "Number of Monte Carlo Samples", "\n")
cat(" ", object$samples, "\n")
cat(" ", paste0("Equal-tail ", round(object$prob_interval*100), "% Probability Interval"), "\n")
cat(" ", "Lower Limit", "\t\t\t", "Upper Limit", "\n")
cat(" ", object$lower_limit, "\t\t\t", object$upper_limit, "\n")
cat(" ", "Posterior Probability that Contrast is Positive", "\n")
cat(" ", object$prob_positive_delta, "\n")
cat(" ", "Prior Probability that Contrast is Positive", "\n")
cat(" ", object$prior_positive_delta, "\n")
cat(" ", "Bayes Factor Estimate that Contrast is Positive", "\n")
cat(ifelse(object$prob_positive_delta==1|object$prior_positive_delta==0,
" Estimated to be greater than ",
" "),
object$bayes_factor, "\n")
})
### Beta Contrasts Plot
#' @export
#' @rdname dfba_beta_contrast_plot_method
setMethod("plot",
signature("dfba_beta_contrast_out"),
function(x){
x.data<-x$delta_quantiles
y.data<-seq(0, 1, 0.01)
xlab="contrast value"
ylab="posterior cumulative probability"
plot(x.data,
y.data,
type = "l",
xlab = xlab,
ylab = ylab,
main = "Based on Monte Carlo Sampling")
})
## Simulated Data
#' @export
#' @rdname dfba_sim_data_show_method
setMethod("show", "dfba_sim_data_out", function(object) {
cat("Frequentist p-value \n")
cat("", object$pvalue, "\n")
cat("Bayesian posterior probability \n")
cat("", object$prH1, "\n")
})
## Sim Data Plot
#' @export
#' @rdname dfba_sim_data_plot_method
setMethod("plot",
signature("dfba_sim_data_out"),
function(x){
if(x$design == "independent"){
sim_data <- c(x$E,
x$C)
group_labs <- c(rep("E",
length(x$E)),
rep("C",
length(x$C)))
boxplot(sim_data~group_labs,
main=expression("Distributions of Simulated Data"),
xlab="Simulated Data Values",
ylab="Group",
horizontal = TRUE)
}else{
sim_data<-x$E - x$C
group_labs <- rep("diff", length(x$E))
boxplot(sim_data~group_labs,
main=expression("Distribution of Differences"),
xlab="Simulated Data Values",
ylab="Difference (E - C)",
horizontal = TRUE)
}
})
# Format for McNemar Output
#' @export
#' @rdname dfba_mcnemar_show_method
setMethod("show", "dfba_mcnemar_out", function(object) {
cat("Descriptive Statistics \n")
cat("========================\n")
cat(" ", "Frequencies of a change in 0/1 response between the two tests\n")
cat(" ", "0 to 1 shift", "\t\t\t", "1 to 0 shift", "\n")
cat(" ", object$n_01, "\t\t\t", object$n_10, "\n")
cat("\n Bayesian Analysis\n")
cat("========================\n")
cat(" ", "Posterior Beta Shape Parameters for Phi_rb\n")
cat(" ", "a.post", "\t\t\t", "b.post", "\n")
cat(" ", object$a.post, "\t\t\t", object$b.post, "\n")
cat(" ", "Posterior Point Estimates for Phi_rb\n")
cat(" ", "phi_rb mean", "\t\t\t", "phi_rb median", "\n")
cat(" ", object$mean_phi_rb, "\t\t\t", object$median_phi_rb, "\n")
cat(" ", round(object$prob_interval*100), "% equal-tail limits:", "\n", sep="")
cat(" ", object$eti_lower, "\t\t\t", object$eti_upper, "\n")
cat(" ", "Point Bayes factor against null of phi_rb = .5:\n")
cat(" ", object$BF10point, "\n")
cat(" ", "Interval Bayes factor against the null that phi_rb less than or equal to .5:\n")
cat(" ", object$BF10interval, "\n")
cat(" ", "Posterior Probability that Phi_rb > .5:\n")
cat(" ", object$postH1, "\n")
})
# Format for Median Test Output
#' @export
#' @rdname dfba_median_test_show_method
setMethod("show", "dfba_median_test_out", function(object) {
cat("Descriptive Statistics \n")
cat("========================\n")
cat(" ", "Overall median:", "\n")
cat(" ", object$median, "\n")
cat(" ", "Frequencies above the median are", "\n")
cat(" ", "E","\t\t\t","C","\n")
cat(" ", object$nEabove,"\t\t\t", object$nCabove, "\n")
cat(" ", "Frequencies at or below the median are", "\n")
cat(" ", "E","\t\t\t","C","\n")
cat("\nBayesian Analyses\n")
cat("========================\n")
cat(" ", "Base rates for E and C responses:\n")
cat(" ", "E", "\t\t\t", "C\n")
cat(" ", object$Ebaserate, "\t\t", object$Cbaserate, "\n")
cat(" ", "Analysis of above-median response rates for E and C:\n")
cat(" ", "Posterior beta shape parameter for the phi parameter","\n")
cat(" ", "a.post", "\t\t\t", "b.post","\n")
cat(" ", object$a.post, "\t\t\t", object$b.post,"\n")
cat("Prior probability of exceeding base rate:", "\n")
cat(" ", "E", "\t\t\t", "C", "\n")
cat(" ", object$priorEhi,"\t\t\t", object$priorChi,"\n")
cat("Posterior probability of exceeding base rate:", "\n")
cat(" ", "E", "\t\t\t", "C", "\n")
cat(" ", object$postEhi,"\t\t\t", object$postChi,"\n")
cat(" ", "Bayes factor BF10 E > E_baserate:","\n")
cat(" ", object$BF10E, "\n")
cat(" ", "Bayes factor BF10 C > C_baserate", "\n")
cat(" ", object$BF01E, "\n")
})
## Beta Descriptive
#' @export
#' @rdname dfba_beta_descriptive_show_method
setMethod("show", "dfba_beta_descriptive_out", function(object) {
cat("Centrality Estimates", "\n")
cat("========================\n")
cat(" ", "Mean","\t\t\t", "Median", "\t\t\t", "Mode", "\n")
cat(" ", object$x_mean, "\t\t", object$x_median, "\t\t", object$x_mode,
ifelse(is.na(object$x_mode), "Note: this beta distribution has no unique mode\n", "\n"))
cat(" ", "Interval Estimates", "\n")
cat("========================\n")
cat(" ", round(object$prob_interval*100), "% Equal-tail interval limits:", "\n")
cat(" ", "Lower Limit", "\t\t\t", "Upper Limit", "\n")
cat(" ", object$eti_lower, "\t\t\t", object$eti_upper, "\n")
cat(" ", round(object$prob_interval*100), "% Highest-density interval limits:", "\n")
cat(" ", "Lower Limit", "\t\t\t", "Upper Limit", "\n")
cat(" ", object$hdi_lower, "\t\t\t", object$hdi_upper,
ifelse(is.na(object$hdi_lower), "Note: this beta distribution has no defined highest-density interval\n", "\n"))
})
## Sign Test
#' @export
#' @rdname dfba_sign_test_show_method
setMethod("show", "dfba_sign_test_out", function(object) {
cat("Analysis of the Signs of the Y1 - Y2 Differences:", "\n")
cat("========================\n")
cat(" ", "Positive Differences","\t", "Negative Differences","\n")
cat(" ", object$n_pos, "\t\t\t", object$n_neg,"\n")
cat(" ", "Analysis of the Positive Sign Rate:"," ","\n")
cat(" ", "Prior Probability", "\t", "Posterior Probability"," ","\n")
cat(" ", object$prior_H1,"\t\t\t", object$post_H1,"\n")
cat(" ", "Bayes Factors for Pos. Rate > .5","\n")
cat(" ", "BF10","\t\t\t", "BF01","\n")
cat(" ", object$BF10, "\t\t", object$BF01,"\n")
})
## Binomial
#' @export
#' @rdname dfba_binomial_show_method
setMethod("show", "dfba_binomial_out", function(object) {
cat("Estimate of the Binomial Population Rate Parameter", "\n")
cat("========================\n")
cat(" ", "Prior Beta Shape Parameters:","\n")
cat(" ", "a0", "\t\t\t", "b0", "\n")
cat(" ", object$a0,"\t\t\t", object$b0,"\n")
cat("Posterior Beta Shape Parameters are :"," ","\n")
cat("post.a","\t\t\t","post.b","\n")
cat(object$post.a,"\t\t\t", object$post.b,"\n")
})
# Plot for McNemar
#' @export
#' @rdname dfba_mcnemar_plot_method
setMethod("plot",
signature("dfba_mcnemar_out"),
function(x,
plot.prior=TRUE){
x.data<-seq(0, 1, 1/1000)
y.predata<-dbeta(x.data, x$a0, x$b0)
y.postdata<-dbeta(x.data, x$a.post, x$b.post)
xlab="phi_rb"
ylab="Probability Density"
if (plot.prior==FALSE){
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab)
} else {
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab,
main=expression("--"~"Prior"~ - "Posterior"))
lines(x.data,
y.predata,
lty=2)
}
})
## Beta Descriptive Plot
#' @export
#' @rdname dfba_beta_descriptive_plot_method
setMethod("plot",
signature("dfba_beta_descriptive_out"),
function(x){
par(mfrow = c(1, 2))
plot(x = x$outputdf$x,
y = x$outputdf$density,
type="l",
xlab = "x",
ylab = "Probability Density")
plot(x = x$outputdf$x,
y = x$outputdf$cumulative_prob,
type="l",
xlab = "x",
ylab = "Cumulative Probability")
par(mfrow=c(1,1))
})
## Sign Test plot
#' @export
#' @rdname dfba_sign_test_plot_method
setMethod("plot",
signature("dfba_sign_test_out"),
function(x,
plot.prior=TRUE){
x.data<-seq(0, 1, 1/1000)
y.predata<-dbeta(x.data, x$a0, x$b0)
y.postdata<-dbeta(x.data, x$a.post, x$b.post)
xlab="phi"
ylab="Probability Density"
if (plot.prior==FALSE){
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab)
} else {
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab,
main=expression("--"~"Prior"~ - "Posterior"))
lines(x.data,
y.predata,
lty=2)
}
})
# Plot for Binomial
#' @export
#' @rdname dfba_binomial_plot_method
setMethod("plot",
signature("dfba_binomial_out"),
function(x,
plot.prior=TRUE){
x.data<-seq(0, 1, 1/1000)
y.predata<-dbeta(x.data, x$a0, x$b0)
y.postdata<-dbeta(x.data, x$a.post, x$b.post)
xlab="phi"
ylab="Probability Density"
if (plot.prior==FALSE){
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab)
} else {
plot(x.data,
y.postdata,
type="l",
xlab=xlab,
ylab=ylab,
main=expression("--"~"Prior"~ - "Posterior"))
lines(x.data,
y.predata,
lty=2)
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.